
A quick search online will show that
guidance relating to “software as a medical
device” (SaMD) is sparse, particularly when
it comes to applying usability engineering
to software. When a client approaches
with what might be SaMD, it is important
to run through a series of questions to
determine exactly what will be required for
that piece of software.

The client might be a traditional medical
device manufacturer or a pharmaceutical
company that has decided to develop a
connected technology to accompany their
treatment pathway. However, occasionally
there are software developers that have found
their innovative software is encroaching
on medical territory, and so are bound
by medical regulations. In any situation,
the same initial stepping stones help to
understand what activities are required. This
article maps out a range of considerations
and steps, from a human factors perspective,
that enable you to plan your usability
engineering efforts accordingly.

CONFIRMING IT IS SAMD

First and foremost, it is necessary to determine
which of the following the software is:

• Software that is not a medical device
• Software that is integrated into a

medical device (Figure 1)
• Software, independent of any hardware,

that contributes towards medical care.

The last of these is SaMD. The
International Medical Device Regulators
Forum (IMDRF), a voluntary group of
medical device regulators from around the
world, has developed guidance that can
help to determine what the software should
be classed as.

The IMDRF defines SaMD as “software
intended to be used for one or more medical
purposes that performs these purposes
without being part of a hardware medical
device”,1 whereby “without being a part
of” means software that is not necessary

for a hardware medical device to achieve
its intended medical purpose. To this end,
to determine whether your software is
SaMD, you need to craft an intended use
statement. This will help to understand if
the intended use is integral to the overall
use of a medical device. If this intended
use statement indicates that the software is
standalone from the device, the software is
more likely to be SaMD.

The IMDRF suggests an intended use
statement should consist of three major points:

1. A clear and strong statement about
intended use, outlining whether the
device is used to:

 • treat or diagnose
 • drive clinical management
 • inform clinical management.
2. The state of the healthcare situation or

condition, either:
 • critical
 • serious
 • non-serious.
3. A description of the software’s core

functionality, identifying critical features
essential to the intended significance of
the information the software provides.

As an illustrative example of an intended
use statement, consider “a piece of software
that provides information regarding insulin
uptake in people newly diagnosed with
Type 1 diabetes, so that they can observe
whether they are calculating their insulin
correctly per meal. The software reviews
data pertaining to insulin levels pre-meals,
post-meals and post-administration of an
insulin dose, and provides an outline of any
discrepancies in the maths”.

 Expert View

In this article, Natalie Shortt, Principal Human Factors Specialist at Harvey Medical

Consulting, discusses the considerations and steps to take when planning usability

engineering efforts for “software as a medical device”.

“SOFTWARE AS A MEDICAL DEVICE”
FROM A HUMAN FACTORS PERSPECTIVE

“To determine whether
your software is SaMD,

you need to craft an
intended use statement.”

Natalie Shortt
Principal Human Factors Specialist
T: +31 30 808 2454
E: natalie@harvey-medical.com

Harvey Medical Consulting
Unit F, South Cambridge Business
Park
Babraham Road
Sawston
Cambridge
CB22 3JH
United Kingdom

www.harvey-medical.com

22 www.ondrugdelivery.com Copyright © 2021 Frederick Furness Publishing Ltd

mailto:natalie@harvey-medical.com
http://www.harvey-medical.com

The intended use statement can be used
to determine if the software meets the
definition of SaMD or if it is an integrated
part of the overall medical device. In both
cases, the device is subject to usability
engineering, but what that will look like may
change according to the overall objective.
Additionally, for software to be considered
a medical device, it must meet the criteria
for a medical purpose. The IMDRF suggests
taking the definition of the term “medical
device”2 into account. This definition will
vary, depending on the market. In the
EU, it is best to review the definition
of a medical device as per the Medical
Device Regulation, whilst in the US it would
make sense to review the formal terms
provided by the US FDA.

CLASSIFYING THE LEVEL OF RISK

Once you have discussed the intended
use of the software and feel confident
that it is SaMD (or at least a part of a
medical device), there is a framework for

determining what level of risk may be
associated with the SaMD.

Within the EU, at least, SaMD is
automatically considered Class IIa
(generally a low-medium risk device) by
default, so initial assumptions should be
that manufacturers will at least have to
perform some usability engineering, develop
usability documentation and demonstrate
compliance with a usability engineering file.
To get a better idea of exactly what level of
effort is required, a systematic process can
be followed.

Start with the IMDRF guidance
N24, “Possible Framework for Risk
Categorization”2 – this will give an
indication of the level of risk that may be
associated with the device, and therefore
what level of usability engineering
should be applied during development.
This categorisation is independent from
regulatory classification and the two should
not be confused.

To get an idea of what level of risk
the SaMD is, return to the intended use
statement from before. Risk associated
with SaMD is considered through
two variables:

• Significance of information provided by
SaMD to healthcare decision

• State of healthcare situation or critical
condition. IMDRF N24 lays this out as a
table (Table 1).

“The intended use statement can be used to determine
if the software meets the definition of SaMD or if it
is an integrated part of the overall medical device.”

 Expert View

Table 1: SaMD risk classification (IMDRF N24).

State of
healthcare
situation or
condition

Significance of information provided by SaMD to healthcare decision

Treats or diagnoses
Drives clinical
management

Informs clinical
management

Critical IV III II

Serious III II I

Non-serious II I I

Figure 1: A woman using her phone
to review the data being collected
by her continuous glucose monitor.
The monitor requires the mobile
app to function, and the mobile
app may influence the patient’s
decision making in monitoring
their glycaemic index. Therefore,
this could be considered “software
integrated into a medical device”.

23Copyright © 2021 Frederick Furness Publishing Ltd www.ondrugdelivery.com

From the intended use statement, you
can reason the type of information that
the SaMD will provide. You can also infer
the state of the healthcare situation or
condition (e.g. the state the patient is in
when receiving care with the SaMD). The
combination of these two variables gives
an indication of how much risk may be
associated with normal use, with I being
low risk and IV being high risk. In the case
of the diabetes management example, we
know it provides information relating to a
serious healthcare condition. Therefore, it
would be somewhere between low and low-
medium risk. Although these categories are
not regulatory categories, the level of risk
can be used to gauge what formal class the
SaMD should be – whether to stick with the
automatic Class IIa or not.

MANAGING THE DOCUMENTATION

At this point, you should be confident about
whether or not your software is SaMD and
what pathway to consider. Let’s assume the
device is Class IIb – perhaps the SaMD is
intended to drive clinical management in
a serious healthcare situation – there will
be an expectation to conduct full usability
engineering and demonstrate compliance
with a usability engineering file.

For hardware devices, this is already quite
a task – but changes are implemented slowly,
which means documents are only updated
periodically, perhaps at the conclusion of each
milestone or once or twice a year. For SaMD,
this is not the case. Software benefits from
being easily edited or updated based on design
decisions – you can enter a meeting with one
iteration and make some design changes within
the meeting, go to another meeting with that
iteration and then make some more design
changes within that meeting! This is great
for refining the device, but is problematic for
usability engineering because these changes
should technically be documented. At the rate
of software development, someone would
have to update usability documentation on a
daily basis, which is impractical.

To reduce the impact quality management
can have on the creative design process for
software, manufacturers can benefit from
setting some internal rules or processes that
trigger the need to update documentation.
This could be included in a “usability

engineering plan”, a document that
contributes to demonstrating compliance.
Within the plan, specify what magnitude
a design change needs to be to trigger a
document review, then ensure that all team
members who have the capacity to make
interface changes understand the triggers.

Additionally, the plan should include a
periodic timeframe for updating documents,
with an agreement on how versions of the
software are managed. For example, this plan
could specifically outline that documents
will be reviewed every three months. On the
xth day of that month, the most up-to-date
version of the software will be considered
the current version and all documentation
will be updated with that iteration. This is
a structured approach that implements the
methodological practices that are typical
to medical device risk management, whilst
trying to maintain the creative processes
common in software development.

CONDUCTING USABILITY STUDIES

Similarly, one of the immediate difficulties
is developing a test plan for something that
is frequently changed. In usability studies, it
is typical to define the use flow within the
protocol and describe what is being assessed
at each point in the use flow.

Furthermore, these documents can take
weeks or months to develop. However, in
software development a lot can change in
the space of a few weeks, let alone a few
months, so the protocol author needs to
take this into account. The author needs to
develop a protocol that is flexible to meet
the needs of prospective study changes. The
author may therefore need to be involved
in various meetings to gain a greater
understanding of the plans for the SaMD
over the following weeks. This will give
them some insight for developing a protocol
with moving goalposts.

Participant interpretation of software has
been shown to be largely different from
hardware and this must be taken into account
when developing the study script as well.

Participant Interpretation of Software
Versus Hardware
Users interact with software completely
differently from hardware. Imagine you are
given a comprehensive blueprint of a house.
Quite easily, you could see all the rooms and
understand the design of the house. Now
imagine you were placed at the front door
of a house you’ve never been into and asked
to find the bathroom on your first attempt.
Would you be able to find the bathroom on
your first attempt? Maybe not!

In late-stage usability studies, participants
are traditionally given one attempt to get
something correct, which makes sense if you
have the blueprints (in this case, a physical
product and all components) but not so
much if you have no idea what’s inside –
looking at the log-in screen for software does
not indicate the internal functionality that is
waiting. So, how does one comply with
usability engineering requirements and also
give users a fair chance at using the product?
One answer is to build in some exploratory
time with the app to give participants an
opportunity to become familiar with the
“inside of the house”. Ensure that you build
this into the most realistic portion of the
session – typically this is once the user has
logged in for the first time.

Also, key to late-stage usability testing
are the success and failure criteria for each
isolated task. Hardware usually has a very
limited number of logical actions, whilst
software has more, and the list grows greater
with the more features that are included in
the software. For example, to use a pen
injector a user must remove the cap. They
can either remove the cap correctly, not
remove it at all or remove it in such a
way that it damages the device. This is a
limited scope of logical actions. However,
with software a user could click the right
option or one of several incorrect options.
Once they have made a choice, they are
faced with the opportunity to click the right
option again or several incorrect options.
Recording all the missteps generates a lot of
data, so success and failure criteria need to

 Expert View

“One of the immediate difficulties is developing a test
plan for something that is frequently changed.”

IN 2022 WE’RE...
BRINGING YOU BETTER CONTENT THAN EVER!

24 www.ondrugdelivery.com Copyright © 2021 Frederick Furness Publishing Ltd

be designed to encompass an entire activity,
rather than the sub-tasks that contribute
to the overall activity. This option is only
appropriate when it reflects the context of
use – if there are sub-tasks that can have
effects later in use, these tasks would need
to be assessed independently.

SUMMARY

So, to drive effective usability engineering
for software, make sure to determine early
on whether it is indeed software in a medical
device, software as a medical device or
simply software, by developing an intended
use statement. Once you have this, consider
possible risk categories for software and

use this to help understand what class of
device you are developing. Finally, use this
knowledge to tailor the usability engineering
effort to meet the needs of the software
development process, remembering to make
sure that your study protocols are tailored
to using software rather than hardware.

ABOUT THE COMPANY

Harvey Medical is a consultancy
providing services in human factors and
market research for medical devices and
combination products. The company has an
in-house multidisciplinary team of human
factors and market research specialists,
providing research services that cover the

entire product development cycle. This
ensures that, in human factors studies,
Harvey Medical always has a commercially
sensitive mindset, whilst it ensures product
safety and usability is at the forefront when
conducting market research studies.

REFERENCES

1. “Software as a Medical Device
(SaMD): Key Definitions”.
IMDRF, Dec 9, 2013.

2. “Software as a Medical Device:
Possible Framework for Risk
Categorisation and Corresponding
Considerations”. IMDRF,
Sep 18, 2014.

ABOUT THE AUTHOR
Natalie Shortt has worked exclusively within usability engineering for medical devices and combination products for over six years and
prior to that completed a BSc in Human Factors (Ergonomics) at Loughborough University (UK). She is the principal specialist at Harvey
Medical, championing all work related to the regulatory requirements for usability engineering. SaMD is a particular interest for Ms Shortt,
recognising the growing number of healthcare software platforms and unique challenges that come with the usability engineering process
for software compared with hardware.

 Expert View

IN 2022 WE’RE...
BRINGING YOU BETTER CONTENT THAN EVER!

25Copyright © 2021 Frederick Furness Publishing Ltd www.ondrugdelivery.com

mailto:nap.monroe%40newdirectionsconsulting.net?subject=
https://mmedhealth.com

